澳门在线威尼斯官方 > 电脑数据库 > 索引实现原理

原标题:索引实现原理

浏览次数:124 时间:2019-11-16

看了很多关于索引的博客,讲的大同小异。但是始终没有让我明白关于索引的一些概念,如B-Tree索引,Hash索引,唯一索引....或许有很多人和我一样,没搞清楚概念就开始研究B-Tree,B+Tree等结构,导致在面试的时候答非所问!本文中有关存储引擎请查看MySQL存储引擎-InnoDB和MyISAM

今天我们来探讨一下数据库中一个很重要的概念:索引。

索引是什么?

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构,即索引是一种数据结构。

索引是帮助MySQL高效获取数据的数据结构。

我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。

索引能干什么?

我们来看一个例子:

提高数据查询的效率。

图片 1

索引:排好序的快速查找数据结构!索引会影响where后面的查找,和order by 后面的排序。

上图展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。

一、索引的分类

1️⃣从存储结构上来划分:BTree索引(B-Tree或B+Tree索引),Hash索引,full-index全文索引,R-Tree索引。

2️⃣从应用层次来分:普通索引,唯一索引,复合索引

3️⃣根据中数据的物理顺序与键值的逻辑(索引)顺序关系:聚集索引,非聚集索引。

​ 1️⃣中所描述的是索引存储时保存的形式,2️⃣是索引使用过程中进行的分类,两者是不同层次上的划分。不过平时讲的索引类型一般是指在应用层次的划分。

就像手机分类:安卓手机,IOS手机 与 华为手机,苹果手机,OPPO手机一样。

普通索引:即一个索引只包含单个列,一个表可以有多个单列索引

唯一索引:索引列的值必须唯一,但允许有空值

复合索引:即一个索引包含多个列

聚簇索引(聚集索引):并不是一种单独的索引类型,而是一种数据存储方式。具体细节取决于不同的实现,InnoDB的聚簇索引其实就是在同一个结构中保存了B-Tree索引(技术上来说是B+Tree)和数据行。

非聚簇索引:不是聚簇索引,就是非聚簇索引(认真脸)。

虽然这是一个货真价实的索引,但是实际的数据库系统几乎没有使用二叉查找树或其进化品种红黑树(red-black tree)实现的,因为它们的效率相对于B树以及哈希来说特别的低。

二、索引的底层实现

mysql默认存储引擎innodb只显式支持B-Tree( 从技术上来说是B+Tree)索引,对于频繁访问的表,innodb会透明建立自适应hash索引,即在B树索引基础上建立hash索引,可以显著提高查找效率,对于客户端是透明的,不可控制的,隐式的。

不谈存储引擎,只讨论实现(抽象)

Hash索引

基于哈希表实现,只有精确匹配索引所有列的查询才有效,对于每一行数据,存储引擎都会对所有的索引列计算一个哈希码(hash code),并且Hash索引将所有的哈希码存储在索引中,同时在索引表中保存指向每个数据行的指针。

图片 2

B-Tree索引(MySQL使用B+Tree)

​ B-Tree能加快数据的访问速度,因为存储引擎不再需要进行全表扫描来获取数据,数据分布在各个节点之中。

图片 3

B+Tree索引

​ 是B-Tree的改进版本,同时也是数据库索引索引所采用的存储结构。数据都在叶子节点上,并且增加了顺序访问指针,每个叶子节点都指向相邻的叶子节点的地址。相比B-Tree来说,进行范围查找时只需要查找两个节点,进行遍历即可。而B-Tree需要获取所有节点,相比之下B+Tree效率更高。

图片 4

结合存储引擎来讨论(一般默认使用B+Tree)

案例:假设有一张学生表,id为主键

id name birthday
1 Tom 1996-01-01
2 Jann 1996-01-04
3 Ray 1996-01-08
4 Michael 1996-01-10
5 Jack 1996-01-13
6 Steven 1996-01-23
7 Lily 1996-01-25

在MyISAM引擎中的实现(二级索引也是这样实现的)

图片 5

在InnoDB中的实现

图片 6

图片 7

接下来介绍的索引的两种实现方式:B+树和哈希。

三、问题

问:为什么索引结构默认使用B-Tree,而不是hash,二叉树,红黑树?

hash:虽然可以快速定位,但是没有顺序,IO复杂度高。

二叉树:树的高度不均匀,不能自平衡,查找效率跟数据有关(树的高度),并且IO代价高。

红黑树:树的高度随着数据量增加而增加,IO代价高。

问:为什么官方建议使用自增长主键作为索引。

结合B+Tree的特点,自增主键是连续的,在插入过程中尽量减少页分裂,即使要进行页分裂,也只会分裂很少一部分。并且能减少数据的移动,每次插入都是插入到最后。总之就是减少分裂和移动的频率。

插入连续的数据:

图片 8

插入非连续的数据

图片 9

原文地址:李强的个人博客(基于SSM,Nginx+Redis的后台架构)


本文由澳门在线威尼斯官方发布于电脑数据库,转载请注明出处:索引实现原理

关键词:

上一篇:MySQL系统变量

下一篇:没有了