澳门在线威尼斯官方 > 电脑操作 > 基础拓展,Python高级编程总结

原标题:基础拓展,Python高级编程总结

浏览次数:139 时间:2019-11-17

 

1.1==,is的使用

上次知识回顾:

·is是比较两个引用是否指向了同一个对象(引用比较)。

代码裤子:

·==是比较两个对象是否相等。

在线编程:

1.2深拷贝、浅拷贝

在线预览:http://github.lesschina.com/python/base/ext/基础拓展.html

1.2.1浅拷贝

终于期末考试结束了,聪明的小明同学现在当然是美滋滋的过暑假了,左手一只瓜,右手一本书~正在给老乡小张同学拓展他研究多日的知识点

浅拷贝是对于一个对象的顶层拷贝

1.NetCore装饰器模式¶

装饰器这次从C#开始引入,上次刚讲迭代器模式,这次把装饰器模式也带一波(纯Python方向的可以选择性跳过,也可以当扩展)

其实通俗讲就是,给原有对象动态的添加一些额外的职责(毕竟动不动就改类你让其他调用的人咋办?也不符合开放封闭原则是吧~)

举个简单的例子:()

BaseComponent.cs

/// <summary>
/// 组件的抽象父类
/// </summary>
public abstract class BaseComponent
{
    /// <summary>
    /// 定义一个登录的抽象方法
    /// 其他方法,这边省略
    /// </summary>
    public abstract string Login();
}

LoginComponent.cs

/// <summary>
/// 默认登录组件(账号+密码)
/// 其他方法省略
/// 友情提醒一下,抽象类里面可以定义非抽象方法
/// </summary>
public class LoginComponent : BaseComponent
{
    public override string Login()
    {
        return "默认账号密码登录";
    }
}

默认调用:

static void Main(string[] args)
{
    var obj = new LoginComponent();
    var str = obj.Login();
    Console.WriteLine(str);
}

如果这时候平台需要添加微信第三方登录,怎么办?一般都是用继承来解决,其实还可以通过灵活的装饰器来解决:(好处可以自己体会)

先定义一个通用装饰器(不一定针对登录,注册等等只要在BaseComponent中的都能用)

/// <summary>
/// 装饰器
/// </summary>
public class BaseDecorator : BaseComponent
{
    protected BaseComponent _component;
    /// <summary>
    /// 构造函数
    /// </summary>
    /// <param name="obj">登录组件对象</param>
    protected BaseDecorator(BaseComponent obj)
    {
        this._component = obj;
    }
    public override string Login()
    {
        string str = string.Empty;
        if (_component != null) str = _component.Login();
        return str;
    }
}

现在根据需求添加微信登录:(符合开放封闭原则)

/// <summary>
/// 默认登录组件(账号+密码)
/// 其他方法省略
/// </summary>
public class WeChatLoginDecorator : BaseDecorator
{
    public WeChatLoginDecorator(BaseComponent obj) : base(obj)
    {
    }
    /// <summary>
    /// 添加微信第三方登录
    /// </summary>
    /// <returns></returns>
    public string WeChatLogin()
    {
        return "add WeChatLogin";
    }
}

调用:(原有系统该怎么用就怎么用,新系统可以使用装饰器来添加新功能)

static void Main(string[] args)
{
    #region 登录模块V2
    // 实例化登录装饰器
    var loginDecorator = new WeChatLoginDecorator(new LoginComponent());
    // 原有的登录方法
    var str1 = loginDecorator.Login();
    // 现在新增的登录方法
    var str2 = loginDecorator.WeChatLogin();
    Console.WriteLine($"{str1}n{str2}");
    #endregion
}

结果:

默认账号密码登录
add WeChatLogin

如果再加入QQ和新浪登录的功能就再添加一个V3版本的装饰器,继承当时V2版本的登录即可(版本迭代特别方便)

/// <summary>
/// 默认登录组件(账号+密码)
/// 其他方法省略
/// </summary>
public class LoginDecoratorV3 : WeChatLoginDecorator
{
    public LoginDecoratorV3(BaseComponent obj) : base(obj)
    {
    }

    /// <summary>
    /// 添加QQ登录
    /// </summary>
    /// <returns></returns>
    public string QQLogin()
    {
        return "add QQLogin";
    }

    /// <summary>
    /// 添加新浪登录
    /// </summary>
    /// <returns></returns>
    public string SinaLogin()
    {
        return "add SinaLogin";
    }
}

调用:

static void Main(string[] args)
{
    #region 登录模块V3
    // 实例化登录装饰器
    var loginDecoratorV3 = new LoginDecoratorV3(new LoginComponent());
    // 原有的登录方法
    var v1 = loginDecoratorV3.Login();
    // 第二个版本迭代中的微信登录
    var v2 = loginDecoratorV3.WeChatLogin();
    // 新增的QQ和新浪登录
    var qqLogin = loginDecoratorV3.QQLogin();
    var sinaLogin = loginDecoratorV3.SinaLogin();
    Console.WriteLine($"{v1}n{v2}n{qqLogin}n{sinaLogin}");
    #endregion
}

结果:

默认账号密码登录
add WeChatLogin
add QQLogin
add SinaLogin

其实还有很多用处,比如原有系统缓存这块当时考虑不到,现在并发来了,已经上线了,原有代码又不太敢大幅度修改,这时候装饰器就很方便的给某些功能添加点缓存、测试、日记等等系列功能(AOP里面很多这种概念)

实际场景说的已经很明白了,其他的自己摸索一下吧

 

拷贝了引用,并没有拷贝内容

2.Python装饰器¶

那Python怎么实现装饰器呢?小胖问道。

小明屁颠屁颠的跑过去说道,通过闭包咯~(闭包如果忘了,可以回顾一下)

1.2.2深拷贝

2.1.装饰器引入¶

来看一个应用场景,以前老版本系统因为并发比较小,没考虑到缓存

def get_data():
    print("直接数据库读取数据")

def main():
    get_data()

if __name__ == '__main__':
    main()

在不修改原有代码的前提下咋办?我们参照C#和Java写下如下代码:

In [1]:

# 添加一个闭包
def cache(func):
    def decorator():
        print("给功能添加了缓存")
        if True:
            pass
        else:
            func()# 如果缓存失效则读取数据库获取新的数据
    return decorator

def get_data():
    print("直接数据库读取数据")

def main():
    f1 = cache(get_data)
    f1()
    print(type(f1))

if __name__ == '__main__':
    main()

 

给功能添加了缓存
<class 'function'>

 

小张问道:“怎么也这么麻烦啊,C#的那个我就有点晕了,怎么Python也这样啊?”f1 = cache(get_data) f1()

小明哈哈一笑道:“人生苦短,我用Python~这句话可不是随便说着玩的,来来来,看看Python的语法糖”:

In [2]:

def cache(func):
    def wrapper():
        print("给功能添加了缓存")
        if True:
            pass
        else:
            func()  # 如果缓存失效则读取数据库获取新的数据
    return wrapper

@cache
def get_data():
    print("直接数据库读取数据")

def main():
    get_data()

if __name__ == '__main__':
    main()

 

给功能添加了缓存

 

其实

@cache
def get_data()

等价于

# 把f1改成函数名字罢了。可以这么理解:get_data重写指向了一个新函数
get_data = cache(get_data)

小张同学瞪了瞪眼睛,努力回想着以前的知识点,然后脱口而出:“这不是我们之前讲的属性装饰器吗?而且好方便啊,这完全符合开放封闭原则啊!“

class Student(object):
    def __init__(self, name, age):
        # 一般需要用到的属性都直接放在__init__里面了
        self.name = name
        self.age = age

    @property
    def name(self):
        return self.__name

    @name.setter
    def name(self, name):
        self.__name = name

    @property
    def age(self):
        return self.__age

    @age.setter
    def age(self, age):
        if age > 0:
            self.__age = age
        else:
            print("age must > 0")

    def show(self):
        print("name:%s,age:%s" % (self.name, self.age))

小明也愣了愣,说道:”也对哦,你不说我都忘了,我们学习面向对象三大特性的时候经常用呢,怪不得这么熟悉呢“

随后又嘀咕了一句:”我怎么不知道开放封闭原则...“

小张嘲笑道:”这你都不知道?对扩展开放,对已经实现的代码封闭嘛~“

In [3]:

# 需要注意一点
def cache(func):
    print("装饰器开始装饰")
    def wrapper():
            print("给功能添加了缓存")
            if True:
                pass
            else:
                func()  # 如果缓存失效则读取数据库获取新的数据
    return wrapper

@cache # 当你写这个的时候,装饰器就开始装饰了,闭包里面的功能是你调用的时候执行
def get_data():
    print("直接数据库读取数据")

 

装饰器开始装饰

 

深拷贝是对于一个对象所有层次的拷贝(递归)

2.2.多个装饰器¶

小明赶紧扯开话题,”咳咳,我们接下来我们接着讲装饰器"

小张问道,像上面那个第三方登录的案例,想加多少加多少,Python怎么办呢?

小明一笑而过~

现在项目又升级了,要求每次调用都要打印一下日记信息,方便以后纠错,小张先用自己的理解打下了这段代码,然后像小明请教:

In [4]:

def log(func):
    def wrapper():
        print("输出日记信息")
        cache(func)()
    return wrapper

def cache(func):
    def wrapper():
        print("给功能添加了缓存")
        if True:
            pass
        else:
            func()  # 如果缓存失效则读取数据库获取新的数据
    return wrapper

@log
def get_data():
    print("直接数据库读取数据")

def main():
    get_data()

if __name__ == '__main__':
    main()

 

输出日记信息
给功能添加了缓存

 

小明刚美滋滋的喝着口口可乐呢,看到代码后一不小心喷了小张一脸,然后尴尬的说道:“Python又不是只能装饰一个装饰器,来看看我的代码”:

In [5]:

def log(func):
    print("开始装饰Log模块")
    def wrapper():
        print("输出日记信息")
        func()
    return wrapper

def cache(func):
    print("开始装饰Cache模块")
    def wrapper():
        print("给功能添加了缓存")
        if True:
            pass
        else:
            func()  # 如果缓存失效则读取数据库获取新的数据
    return wrapper

@log
@cache
def get_data():
    print("直接数据库读取数据")

def main():
    get_data()

if __name__ == '__main__':
    main()

 

开始装饰Cache模块
开始装饰Log模块
输出日记信息
给功能添加了缓存

 

小张耐心的看完了代码,然后说道:“咦,我发现它装饰的时候是从下往上装饰,执行的时候是从上往下啊?执行的时候程序本来就是从上往下,按照道理应该是从上往下装饰啊?”

小明神秘的说道:“你猜啊~你可以把它理解为寄快递和拆快递

小张兴奋的跳起来了:

装饰器:装快递,先包装里面的物品,然后再加个盒子。执行装饰器:拆快递,先拆外面的包装再拆里面的~简直妙不可言啊

进一步理解拷贝

2.3.带参装饰器¶

小明继续讲述他哥哥的血泪历史:

需求时刻在变,系统使用范围更广了,为了不砸场子,抠门的老板决定每年多花5W在技术研发的硬件支持上,这下子技术部老开心了,想想以前前端只能通过CDN和HTTP请求来缓存,后端只能依赖页面缓存和数据库缓存就心塞,于是赶紧新增加一台Redis的云服务器。为了以后和现在缓存代码得变一变了,需要支持指定的缓存数据库:(如果不是维护别人搞的老项目,你这么玩保证被打死,开发的时候老老实实的工厂模式搞起)

带参数的装饰器一般都是用来记录logo日记比较多,自己开发知道debug模式,生产指定except模式等等

In [6]:

# 可以理解为,在原来的外面套了一层
def cache(cache_name):
    def decorator(func):
        def wrapper():
            if cache_name == "redis":
                print("给功能添加了Redis缓存")
            elif cache_name == "memcache":
                pass
            else:
                func()
        return wrapper
    return decorator

@cache("redis") # 相当于是:get_data = cache(”redis“)(get_data)
def get_data():
    print("直接数据库读取数据")

def main():
    get_data()

if __name__ == '__main__':
    main()

 

给功能添加了Redis缓存

 

小张很高兴,然后练了练手,然后质问小明道:”你是不是藏了一手!“

代码如下:

In [7]:

def log(func):
    def inner():
        print("%s log_info..." % func.__name__)
        func()
    return inner

@log
def login_in(name_str, pass_str):
    return "欢迎登录:%s" % (name_str)

@log
def login_out():
    print("已经退出登录")

@log
def get_data(id):
    print("%s:data xxx" % id)

def main():
    login_out()
    get_data(1)
    print(login_in("小明", "xxx"))

if __name__ == '__main__':
    main()

 

login_out log_info...
已经退出登录

 

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-7-dcb695819107> in <module>()
     23 
     24 if __name__ == '__main__':
---> 25main()

<ipython-input-7-dcb695819107> in main()
     19 def main():
     20     login_out()
---> 21get_data(1)
     22     print(login_in("小明", "xxx"))
     23 

TypeError: inner() takes 0 positional arguments but 1 was given

 

In [23]: a = [11,22,33]

2.4.通用装饰器¶

小明尴尬的笑了下,然后赶紧倾囊相授,定义一个通用的装饰器:(传参数就在外面套一层)

def log(func):
    @functools.wraps(func) # 签名下面一个案例就会讲
    def wrapper(*args,**kv):
        """可变参 + 关键字参数"""
        print("%s log_info..." % func.__name__)
        return func(*args,**kv)
    return wrapper

这部分知识如果忘记了可以回顾一下,我们之前讲的函数系列:https://www.cnblogs.com/dotnetcrazy/p/9175950.html

In [8]:

def log(func):
    # 可变参 + 关键字参数
    def wrapper(*args,**kv):
        print("%s log_info..." % func.__name__)
        return func(*args,**kv)
    return wrapper

@log
def login_in(name_str, pass_str):
    return "欢迎登录:%s" % (name_str)

@log
def login_out():
    print("已经退出登录")

@log
def get_data(id):
    print("%s:data xxx" % id)

def main():
    login_out()
    get_data(1)
    print(login_in("小明", "xxx"))

if __name__ == '__main__':
    main()

 

login_out log_info...
已经退出登录
get_data log_info...
1:data xxx
login_in log_info...
欢迎登录:小明

 

In [24]: b = [44,55,66]

2.5.扩展补充¶

其实装饰器可以做很多事情,比如强制类型检测等,先看几个扩展:

In [25]: c = (a,b)

1.装饰器方法签名的问题¶

成也装饰器,败也装饰器,来个案例看看,装饰器装饰的函数真的就对原函数没点影响?

In [9]:

# 添加一个闭包
def cache(func):
    def wrapper(*args,**kv):
        if True:
            print("缓存尚未失效:直接返回缓存数据")
        else:
            func(*args,**kv)
    return wrapper

def get_data(id):
    """获取数据"""
    print("通过%d直接数据库读取数据"%id)

In [10]:

# 进行装饰
get_data = cache(get_data)
# 调用原有名称的函数
get_data(110)
# 发现虽然函数调用时候的名字没有变
# 但是内部签名却变成了闭包里面的函数名了
print(get_data.__name__)
print(get_data.__doc__)
# print(get_data.__annotations__)

 

缓存尚未失效:直接返回缓存数据
wrapper
None

 

发现虽然函数调用时候的名字没有变,但是内部签名却变成了闭包里面的函数名了!

玩过逆向的人都知道,像你修改了apk文件,它看似一样,但签名就变了,得再处理才可能绕过原来的一些自效验的验证措施

这边一样的道理,你写了一个装饰器作用在某个函数上,但是这个函数的重要的元信息比如名字、文档字符串、注解和参数签名都丢失了。

functools里面的wraps就帮我们干了这个事情(之前讲模块的时候引入了functools,随后讲衍生的时候用了里面的偏函数,这边讲讲wraps

上面代码改改:

In [11]:

from functools import wraps

# 添加一个闭包
def cache(func):
    @wraps(func)
    def wrapper(*args,**kv):
        if True:
            print("缓存尚未失效:直接返回缓存数据")
        else:
            func(*args,**kv)
    return wrapper

def get_data(id):
    """获取数据"""
    print("通过%d直接数据库读取数据"%id)

# 进行装饰
get_data = cache(get_data)
# 调用原有名称的函数
get_data(110)
# 签名已然一致
print(get_data.__name__)
print(get_data.__doc__)
# print(get_data.__annotations__)

 

缓存尚未失效:直接返回缓存数据
get_data
获取数据

 

另外:@wraps有一个重要特征是它能让你通过属性 __wrapped__ 直接访问被包装函数,eg:

In [12]:

get_data.__wrapped__(100)

 

通过100直接数据库读取数据

 

In [26]: e = copy.deepcopy(c)

2.装饰器传参的扩展(可传可不传)¶

In [13]:

import logging
from functools import wraps, partial

def logged(func=None, *, level=logging.DEBUG, name=None, message=None):
    if func is None:
        return partial(logged, level=level, name=name, message=message)

    logname = name if name else func.__module__
    log = logging.getLogger(logname)
    logmsg = message if message else func.__name__

    @wraps(func)
    def wrapper(*args, **kwargs):
        log.log(level, logmsg)
        return func(*args, **kwargs)
    return wrapper

@logged
def add(x, y):
    return x + y

@logged(level=logging.CRITICAL, name='测试')
def get_data():
    print("读数据ing")

def main():
    add(1,2)
    get_data()

if __name__ == '__main__':
    main()

 

get_data

 

读数据ing

 

In [27]: a.append(77)

3.类中定义装饰器¶

在类里面定义装饰器很简单,但是你首先要确认它的使用方式。比如到底是作为一个实例方法还是类方法:(别忘记写selfcls

In [14]:

from functools import wraps

class A(object):
    # 实例方法
    def decorator1(self, func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print("实例方法装饰器")
            return func(*args, **kwargs)
        return wrapper

    # 类方法
    @classmethod
    def decorator2(cls, func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            print("类方法装饰器")
            return func(*args, **kwargs)
        return wrapper

In [15]:

# 装饰方式不一样
a = A()
@a.decorator1 # 实例方法调用
def test1():
    pass

@A.decorator2 # 类方法调用
def test2():
    pass

In [16]:

# 调用一下
test1()
test2()

 

实例方法装饰器
类方法装饰器

 

在涉及到继承的时候。 例如,假设你想让在A中定义的装饰器作用在子类B中。你需要像下面这样写:

class B(A):
    @A.decorator2
    def test(self):
        pass

也就是说,装饰器要被定义成类方法并且你必须显式的使用父类名去调用它。

你不能使用 @B.decorator2 ,因为在方法定义时,这个类B还没有被创建。

In [28]: a

4.类装饰器¶

看这个之前,我们先来看看怎么把类当函数一样使用:

In [17]:

class A(object):
    def __call__(self):
        print("让类对象能像函数一样调用的~魔法方法")

def main():
    a = A()
    a()

if __name__ == '__main__':
    main()

 

让类对象能像函数一样调用的~魔法方法

 

重载这些魔法方法一般会改变对象的内部行为。上面这个例子就让一个类对象拥有了被调用的行为。

装饰器函数其实是这样一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。

在Python中一般callable对象都是函数,但也有例外。只要某个对象重写了 __call__() 方法,那么这个对象就是callable的

用类来实现呢?我们可以让类的构造函数__init__()接受一个函数,然后重载__call__()并返回一个函数,也可以达到装饰器函数的效果

我们拿之前说的通用装饰器的例子继续说:(一般来说装饰器就定义成方法,然后给需要添加的函数或者类方法添加就基本够用了

In [18]:

from functools import wraps

class Log(object):
    def __init__(self, func):
        wraps(func)(self)  # @wraps(func) 访问不到,所以用这种方式
        self.__func = func

    def __call__(self, *args, **kvs):
        print("%s log_info..." % self.__func.__name__)
        return self.__func(*args, **kvs)

@Log # 相当于 login_in=Log(login_in)
def login_in(name_str, pass_str):
    return "欢迎登录:%s" % (name_str)

@Log
def login_out():
    print("已经退出登录")

@Log
def get_data(id):
    print("%s:data xxx" % id)

def main():
    login_out()
    get_data(1)
    print(login_in("小明", "xxx"))

if __name__ == '__main__':
    main()

 

login_out log_info...
已经退出登录
get_data log_info...
1:data xxx
login_in log_info...
欢迎登录:小明

 

对类进行装饰的测试:(以上一个案例为例)

装饰实例方法的时候容易出现莫名其妙的错误,所以一般加上get方法(反射系列的稍后会讲)

eg:show() missing 1 required positional argument: 'self'

完整写法:(你可以去除__get__试试)

In [19]:

import types
from functools import wraps

class Log(object):
    def __init__(self, func):
        wraps(func)(self)  # @wraps(func) 访问不到,所以用这种方式
        self.__func = func

    def __call__(self, *args, **kvs):
        print("%s log_info..." % self.__func.__name__)
        return self.__func(*args, **kvs)

    # 装饰实例方法的时候容易出现莫名其妙的错误,所以一般加上get方法
    # eg:show() missing 1 required positional argument: 'self'
    def __get__(self, instance, cls):
        if instance is None:
            return self
        else:
            return types.MethodType(self, instance)

class LoginComponent(object):
    def __init__(self, name):
        self.__name = name

    @Log
    def show(self):
        """实例方法"""
        print("欢迎你:%s" % self.__name)

    @classmethod
    @Log  # 写在下面("从下往上装,从上往下拆")
    def login_in(cls):
        """类方法"""
        print("登录ing")

    @staticmethod
    @Log
    def show_news():
        """静态方法"""
        print("今天的新闻是...")

def main():
    LoginComponent.login_in()
    LoginComponent.show_news()
    login = LoginComponent("小明")
    login.show()

if __name__ == '__main__':
    main()

 

login_in log_info...
登录ing
show_news log_info...
今天的新闻是...
show log_info...
欢迎你:小明

 

更多的可以参考如下链接:

详解Python装饰器

将装饰器定义为类

Python中的__init__()和__call__()函数

python中装饰器的使用和类装饰器在类中方法的使用


Out[28]: [11,22,33,77]

3.面向对象系列扩展¶

看着小张准备回家换衣服了,小明有点失落,又有点孤单,于是说道:“逗逼张,你还要听吗?我准备讲类相关的知识了,这些可是我课后自学的哦~”

小张转了转身,一念间就留了下来~

In [29]: b

3.1.动态添加属性和方法¶

类相关的基础知识如果忘记,可以查看之前的文章:https://www.cnblogs.com/dotnetcrazy/p/9202988.html

当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性:

In [20]:

# 定义一个类
class Person(object):
    def __init__(self, name):
        self.__name = name

    def show(self):
        print("中国欢迎你~", self.__name)

In [21]:

xiaoming = Person("小明")
xiaoming.show() # 正常调用

# 给实例动态添加一个属性
xiaoming.age = 22
print(xiaoming.age)

 

中国欢迎你~ 小明
22

In [22]:

# 其他实例是访问不到这个属性的
xiaopan = Person("小潘")
xiaopan.age

 

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-22-efcec543fe3f> in <module>()
      1 # 其他实例是访问不到这个属性的
      2 xiaopan = Person("小潘")
----> 3xiaopan.age

AttributeError: 'Person' object has no attribute 'age'

 

"这个以前不是讲过嘛,动态添加属性,还有没有啥我不知道的知识了?"小张不屑的说道.

小明故作悬疑,抬头看着小张说道:“你知道怎么添加类属性吗?知道怎么添加方法吗?”

小张沉默不语,默默的看着小明讲课,随后心里想到:“这个坑货,话也不说全,还好现在是夏天,不然我早着凉了”

要想添加其他实例都可以访问的属性,可以给类添加一个类属性,用法和上面差不多,只是把对象改成类。

来看个案例:

In [23]:

# 给类动态添加一个属性
Person.age = 22

xiaoming = Person("小明")
print(xiaoming.age)

xiaopan = Person("小潘")
print(xiaopan.age)

 

22
22

 

Out[29]: [44,55,66]

1.添加实例方法¶

小张,还记得讲装饰器的时候有这么一句代码吗?

types.MethodType(self, instance)

小张:"记得当时用类装饰实例方法的时候出现了问题,然后才加的?"

对头,以上面Person类为例,来一起看怎么动态添加方法

In [24]:

import types

class Person(object):
    def __init__(self, name):
        self.__name = name

def test(self):
    print("测试一下")

def main():
    xiaoming = Person("小明")
    xiaoming.test = types.MethodType(test, xiaoming)
    xiaoming.test()

if __name__ == '__main__':
    main()

 

测试一下

 

你可以思考一下,为什么必须通过types.MethodType才行?(提示:self

注意一点,当你在新方法中调用类中私有方法时就会出问题

其实这个本质相当于通过实例对象调用里面公开属性

In [25]:

import types

class Person(object):
    def __init__(self, name):
        self.__name = name

# 一样的代码,只是调用了私有属性
def test(self):
    print("中国欢迎你,%s" % self.__name)

def main():
    xiaoming = Person("小明")
    xiaoming.test = types.MethodType(test, xiaoming)
    xiaoming.test() # 其实这个本质相当于通过实例对象调用里面公开属性

if __name__ == '__main__':
    main()

 

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-25-2bf92b457fc8> in <module>()
     15 
     16 if __name__ == '__main__':
---> 17main()

<ipython-input-25-2bf92b457fc8> in main()
     12     xiaoming = Person("小明")
     13     xiaoming.test = types.MethodType(test, xiaoming)
---> 14xiaoming.test() # 其实这个本质相当于通过实例对象调用里面公开属性
     15 
     16 if __name__ == '__main__':

<ipython-input-25-2bf92b457fc8> in test(self)
      7 # 一样的代码,只是调用了私有属性
      8 def test(self):
----> 9print("中国欢迎你,%s" % self.__name)
     10 
     11 def main():

AttributeError: 'Person' object has no attribute '__name'

 

In [30]: c

2.添加类方法和静态方法¶

看一下类方法和静态方法的案例:

In [26]:

# 类方法案例
class Person(object):
    pass

@classmethod
def test(cls):
    print(cls)

def main():
    Person.test = test # 直接赋值即可
    xiaoming = Person()
    xiaoming.test()

if __name__ == '__main__':
    main()

 

<class '__main__.Person'>

In [27]:

# 静态方法案例
class Person(object):
    pass

@staticmethod
def test():
    print("test")

def main():
    Person.test = test
    xiaoming = Person()
    xiaoming.test()

if __name__ == '__main__':
    main()

 

test

 

Out[30]: ([11,22,33,77], [44,55,66])

3.2.__slots__

这下小张急了,怎么又和上次讲得模块一样,无法无天了啊?有没有办法限制一下呢?

小明哈哈一笑,娓娓道来:

In [31]: e

1.指定实例属性¶

如果我们想要限制实例的属性怎么办?比如,只允许添加指定属性和方法?

In [28]:

# 定义一个类
class Person(object):
    __slots__ = ("age", "name")  # 用tuple定义允许绑定的属性名称

    def show(self):
        print("中国欢迎你~")

xiaoming = Person()
xiaoming.name="小明"
xiaoming.age = 22
xiaoming.qq = 110 # 不允许的属性就添加不了

 

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-28-2f9e13cdc435> in <module>()
      9 xiaoming.name="小明"
     10 xiaoming.age = 22
---> 11xiaoming.qq = 110 # 不允许的属性就添加不了

AttributeError: 'Person' object has no attribute 'qq'

 

说几个测试后的结论:

  1. __slots__不一定是元组,你用列表也一样(推荐和官方一致)
  2. 如果你定义的私有属性不在元组内,也会报错

In [29]:

# 列表定义__slots__不会报错
class Person(object):
    __slots__ = ["__name", "age", "gender"]

    def __init__(self, name):
        self.__name = name

    def show(self):
        print("中国欢迎你~")


xiaoming = Person("小明")
xiaoming.age = 22
xiaoming.gender = "男"

In [30]:

# 注意一个东西,如果你定义的私有属性不在元组内,也会报错
class Person(object):
    __slots__ = ("age")

    def __init__(self, name):
        self.__name = name

    def show(self):
        print("中国欢迎你~")

xiaoming = Person("小明")
xiaoming.age = 22

 

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-30-0b85ac9c18af> in <module>()
      9         print("中国欢迎你~")
     10 
---> 11xiaoming = Person("小明")
     12 xiaoming.age = 22

<ipython-input-30-0b85ac9c18af> in __init__(self, name)
      4 
      5     def __init__(self, name):
----> 6self.__name = name
      7 
      8     def show(self):

AttributeError: 'Person' object has no attribute '_Person__name'

 

Out[31]: ([11,22,33], [44,55,66])

2.指定实例“方法”¶

这个限制对实例方法一样有效,再复习下给实例对象添加方法:

import types

class Person(object):
    __slots__ = ("__name", "age", "test")

    def __init__(self, name):
        self.__name = name
    def show(self):
        print("中国欢迎你~")

def test(self):
    print("test")

xiaoming = Person("小明")
xiaoming.age = 22
xiaoming.test = types.MethodType(test, xiaoming)
xiaoming.test()

看看被限制之后:(Python中定义的方法相当于定义了一个属性,然后指向了定义的函数)

In [31]:

# 这个限制对实例方法一样有效
import types

class Person(object):
    __slots__ = ("__name", "age")

    def __init__(self, name):
        self.__name = name
    def show(self):
        print("中国欢迎你~")

def test(self):
    print("test")

xiaoming = Person("小明")
xiaoming.age = 22
xiaoming.test = types.MethodType(test, xiaoming)
xiaoming.test()

 

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-31-d1bab7d57b40> in <module>()
     15 xiaoming = Person("小明")
     16 xiaoming.age = 22
---> 17xiaoming.test = types.MethodType(test, xiaoming)
     18 xiaoming.test()

AttributeError: 'Person' object has no attribute 'test'

 

小明讲得唾沫横飞,然后故作神秘的和小张说道:

In [32]:

3.扩展:看看对类有啥影响¶

测试结果:不影响

In [32]:

# 类方法案例
class Person(object):
    __slots__ = ("name", "age")
    pass

@classmethod
def test1(cls):
    print("类方法")

@staticmethod
def test2():
    print("静态方法")

def main():
    Person.qq = 110
    Person.test1 = test1  # 类方法
    Person.test2 = test2  # 静态方法
    xiaoming = Person()
    print(xiaoming.qq)
    xiaoming.test1()
    xiaoming.test2()

if __name__ == '__main__':
    main()

 

110
类方法
静态方法

 

In [32]:

扩展:__getattribute__属性拦截器¶

有点像C#里面的Attribute标签,AOP其实就是这类的思想

更多可以参考如下链接:

动态添加属性和方法

反射以及魔法方法相关内容

制定类以及魔法方法相关内容

In [33]:

class Person(object):
    def __init__(self, name):
        self.__name = name

    def show(self):
        print(self.__name)

    # 属性拦截器里面不要调用self.方法 or self.属性
    def __getattribute__(self, obj):
        print("obj:", obj)
        if obj == "show":
            print("do something")
        elif obj == "_Person__name":  # 注意这种情况,如果你想要访问私有属性,需要写出类名.属性
            print("Log info : xxx")
        return object.__getattribute__(self, obj) # 你重写了属性、方法获取的方式,别忘记返回对应的属性

def main():
    p = Person("小明")
    p.show()

if __name__ == '__main__':
    main()

 

obj: show
do something
obj: _Person__name
Log info : xxx
小明

 

In [32]: f = copy.copy(c)

3.3.元类系列¶

小张一脸懵逼的看着小明,然后说道:”就没有类似于C#里面的反射机制?“

小明背着手,缓缓的绕着小张走了一圈,那眼神仿佛是在看一件工艺艺术品一样,然后随口说道:

In [33]: a.append(88)

3.3.1.type动态创建类¶

前面我们讲过了type()函数可以查看一个类型或变量的类型。比如说:

Person是一个class,它的类型就是type,而xiaoming是一个实例,它的类型就是class Person

看个例子:

In [34]:

class Person(object):
    pass

def main():
    xiaoming = Person()
    print(type(Person))
    print(type(xiaoming))

if __name__ == '__main__':
    main()

 

<class 'type'>
<class '__main__.Person'>

 

其实还可以通过 __class__ 来查看创建对象的是谁:

In [35]:

class Person(object):
    pass

def main():
    xiaoming = Person()
    print(Person.__class__)
    print(xiaoming.__class__)

if __name__ == '__main__':
    main()

 

<class 'type'>
<class '__main__.Person'>

 

小张被小明看的发毛,然后赶紧扯开话题说道:”怎么都是type?难道这个就是接下来准备讲的内容?“

小明点头说道:”是滴~“

我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数

那怎么创建呢?以上面那个案例为摸版,来个案例:

类名 = type("类名", 父类们的Tuple, Dict)

In [36]:

def main():
    Person = type("Person", (object, ), {})
    xiaoming = Person()
    print(Person.__class__)
    print(xiaoming.__class__)

if __name__ == '__main__':
    main()

 

<class 'type'>
<class '__main__.Person'>

 

小张感叹道:”Python的这种‘反射’太过简单了吧,我直接都可以写案例了“

比如,实现如下内容:

In [37]:

class Person(object):
    def show(self):
        print("父类方法:mmd")

class Student(Person):
    gender = "男"

    def __init__(self, name):
        self.__name = name

    def eat(self):
        print("%s实例方法:大口吃饭" % self.__name)

    @classmethod
    def run(cls):
        print("我是类方法:跑着上课")

    @staticmethod
    def sleep():
        print("静态方法:晚安")

def main():
    print(Student.gender)
    xiaoming = Student("小明")
    xiaoming.show()
    xiaoming.eat()
    xiaoming.run()
    xiaoming.sleep()

if __name__ == '__main__':
    main()

 

男
父类方法:mmd
小明实例方法:大口吃饭
我是类方法:跑着上课
静态方法:晚安

In [38]:

def show(self):
    print("父类方法:mmd")

def __init__(self, name):
    self.__name = name

def eat(self):
    print("%s实例方法:大口吃饭" % self.__name)

@classmethod
def run(cls):
    print("我是类方法:跑着上课")

@staticmethod
def sleep():
    print("静态方法:晚安")

def main():
    Person = type("Person", (object, ), {"show": show})
    Student = type(
        "Student", (Person, ), {
            "gender": "男",
            "__init__": __init__,
            "eat": eat,
            "run": run,
            "sleep": sleep
        })

    print(Student.gender)
    xiaoming = Student("小明")
    xiaoming.show()
    xiaoming.eat()
    xiaoming.run()
    xiaoming.sleep()

if __name__ == '__main__':
    main()

 

男
父类方法:mmd
小明实例方法:大口吃饭
我是类方法:跑着上课
静态方法:晚安

 

In [34]: a

3.3.2.元类~metaclass

小明又仔细端详了小张一次,然后继续讲到:

当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

总的流程就是:先定义metaclass,再创建类,最后创建实例

type就是Python在背后用来创建所有类的那个元类


小张有点恐慌的看了一眼小明,然后继续听讲

Python2是看看类里面有没有__metaclass__这个属性,有就通过它指向的函数或者方法来创建类

Python3简化了一下,在Class定义的时候就可以指定了,eg:class Person(object, metaclass=type)

In [39]:

# 这三个参数其实就是type对应的三个参数
def create_class(name, bases, attrs):
    attrs["name"] = "小明"
    return type(name, bases, attrs)

class Person(object, metaclass=create_class):
    pass

def main():
    # 判断一个对象有没有某个属性
    hasattr(Person, "name")
    print(Person.name)

if __name__ == '__main__':
    main()

 

小明

 

其实原类有点像刚刚讲的属性拦截器了,大概流程如下:

  1. 拦截类的创建
  2. 修改类
  3. 返回修改之后的类

来一个正规化的写法,eg:给MyList添加一个add方法(list是append方法,别混淆了)

In [40]:

# metaclass是类的模板,所以必须从`type`类型派生:
class ListMetaclass(type):
    def __new__(cls, name, bases, attrs):
        attrs['add'] = lambda self, value: self.append(value)
        return type.__new__(cls, name, bases, attrs)

class MyList(list, metaclass=ListMetaclass):
    pass

def main():
    mylist = MyList()
    mylist.add("mmd")
    print(mylist)

if __name__ == '__main__':
    main()

 

['mmd']

 

元类一般ORM用的比较多(映射),如果你不编写ORM框架的话,基本上用不到

这方面可以参考这篇文章:尝试编写一个ORM框架


Out[34]: [11,22,33,77,88]

3.4.枚举类¶

枚举类经常用,代码也很简单,继承一下Enum类就可以了,unique用来防止重复的(重复会提示你)

In [41]:

from enum import Enum, unique

@unique
class StatusEnum(Enum):
    # 待审核状态(0)默认
    Pendding = 0

    # 审核已通过(1)正常
    Normal = 1

    # 审核不通过(2)未删
    Cancel = 2

    # 已删除状态(99)假删
    Delete = 99

# 调用:
StatusEnum.Delete

Out[41]:

<StatusEnum.Delete: 99>

In [42]:

# 重复项测试
from enum import Enum, unique

@unique
class StatusEnum(Enum):
    # 审核已通过(1)正常
    Normal = 1
    # 已删除状态(99)假删
    Delete = 99
    # 重复测试
    Test = 99

# 调用:
StatusEnum.Delete

 

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-42-6a79f45cf1d9> in <module>()
      3 
      4 @unique
----> 5class StatusEnum(Enum):
      6     # 审核已通过(1)正常
      7     Normal = 1

~/anaconda3/lib/python3.6/enum.py in unique(enumeration)
    832                 ["%s -> %s" % (alias, name) for (alias, name) in duplicates])
    833         raise ValueError('duplicate values found in %r: %s' %
--> 834                 (enumeration, alias_details))
    835     return enumeration
    836 

ValueError: duplicate values found in <enum 'StatusEnum'>: Test -> Delete

 

In [35]: b

3.5.垃圾回收¶

之前写的文章里面有提到过,可以简单回顾一下:(可变类型和不可变类型 引用数的引入)

其实程序员基本上关注,实在要关注的就是怎么显示回收:

import gc # 需要导入gc模块

print(gc.collect()) # 显式垃圾回收
print(gc.garbage)   # 看回收了哪些

先看看之前讲可变类型和不可变类型说的一句话:

Python对int类型和较短的字符串进行了缓存,无论声明多少个值相同的变量,实际上都指向同个内存地址

看个案例:

In [2]:

a=10
b=10
c=10
print(id(a))
print(id(b))
print(id(c))

 

94747627400000
94747627400000
94747627400000

 

上面的ID都一样,那较短到底是多短呢?

先贴一下逆天的测试结果:(不要在编辑器里面测试,建议进入官方的python3交互模式,用vscode测试的结果不准)

  1. 小整数[-5,257)共用对象,常驻内存不在这个范围内的均创建一个新的对象
  2. 单个字符共用对象,常驻内存
  3. 字符串:
    • 英文单词,共用对象,引用计数为0就删除
    • 英文中有空格(英文句子、词组),不共用,引用计数为0的时候就删掉
    • 中文字符串:不共用,引用计数为0的时候就删掉

其实也很好理解,第一个范围是程序员经常用的范围,字符串系列嘛就更正常了,老外肯定不管中文什么的,要是中国人发明的可以常用汉字常驻内存^_^ 然后一篇文章里面单词出现频率肯定比词组和句子高,所以都能解释通了

来简单验证一下:

图片 1

In [1]:

# 257的时候就取不到了,这时候都是不同的ID
# 这个就是所谓的大整数了(每一个大整数,均创建一个新的对象)
a=257
b=257
c=257
print(id(a))
print(id(b))
print(id(c))

 

140602139583728
140602139584112
140602139583792

In [2]:

# 单个字符
d='a'
e='a'
f='a'
print(id(d))
print(id(e))
print(id(f))

 

140602366927792
140602366927792
140602366927792

In [3]:

# 英文单词
str1 = "dog"
str2 = "dog"
str3 = "dog"
print(id(str1))
print(id(str2))
print(id(str3))

 

140602139175376
140602139175376
140602139175376

In [4]:

# 英文中有空格(句子,词组)
str4 = "big dog"
str5 = "big dog"
str6 = "big dog"
print(id(str4))
print(id(str5))
print(id(str6))

 

140602139174984
140602139174816
140602139175544

In [5]:

# 不共享对象,计数为0就删除
str7 = "明"
str8 = "明"
str9 = "明"
print(id(str7))
print(id(str8))
print(id(str9))

 

140602139296272
140602139296352
140602139296192

In [6]:

str10 = "小明"
str11 = "小明"
str12 = "小明"
print(id(str10))
print(id(str11))
print(id(str12))

 

140602139147320
140602139146616
140602139146792

In [7]:

str13 = "小 明"
str14 = "小 明"
str15 = "小 明"
print(id(str10))
print(id(str11))
print(id(str12))

 

140602139147320
140602139146616
140602139146792

 

再说说查看引用的时候注意一下:sys.getrefcount的参数object也会占1个引用计数(sys.getrefcount(a)可以查看a对象的引用计数,但是比正常计数大1,因为调用函数的时候传入a,这会让a的引用计数+1)

这个是Python主要的一种垃圾回收方式(计数引用),看看源码:

参考链接:

// 实际上没有任何东西被声明为PyObject,但是每个指向Python对象的指针都可以强制转换为PyObject(这是手工制作的继承)
typedef struct _object {
    _PyObject_HEAD_EXTRA
    Py_ssize_t ob_refcnt; /* 引用计数 */
    struct _typeobject *ob_type;
} PyObject;

// 类似地,每个指向可变大小Python对象的指针都可以转换为PyVarObject
typedef struct {
    PyObject ob_base;
    Py_ssize_t ob_size; /* 可变变量引用计数 */
} PyVarObject;

In [1]:

# 引用计数
import sys


# 定义一个临时类
class Temp(object):
    def __del__(self):
        print("你被干掉了")


t1 = Temp()
print(sys.getrefcount(t1))  #(结果比实际引用大1)【object也会占1个引用计数】

t2 = t1
print(sys.getrefcount(t1))
print(sys.getrefcount(t2))

del t1
print(sys.getrefcount(t2))
# sys.getrefcount(t1)#被删掉自然没有了

del t2
print("-" * 10)

 

2
3
3
2
你被干掉了
----------

 

引用计数基本上可以解决大部分的问题,用起来比较简单,而且实时性比较高(一旦没有引用,内存就直接释放了。不用像其他机制等到特定时机。实时性还带来一个好处:处理回收内存的时间分摊到了平时)

但对于循环引用,或者对于像双向链表这样的方式,就算引用对象删除了,它的计数还是1(相互引用嘛)

所以Python解释器用了另一种方法解决这个:

分代回收(隔代回收)

Python解释器设置了某些阀值,当达到了阀值就进行第一轮回收(大概是有循环引用的-1,然后看两个相互引用的对象现在的引用结果是不是都是0,如果都是0说明没有外部引用,那就是垃圾了),不是垃圾的移到第二个链表里面,当第二轮达到阀值的时候,进行第二轮回收(一轮的也回收下),不是垃圾的"老对象"移到第三个链表里面,当第三轮达到阀值的时候统统回收一波)

gc.get_count() 获取当前自动执行垃圾回收的计数器

gc.get_threshold() 获取的gc模块中自动执行垃圾回收的频率(可以自己设置)默认是:(700, 10, 10)

来看看阀值情况:

In [1]:

import gc

print(gc.get_count())
print(gc.get_threshold())

 

(234, 8, 1)
(700, 10, 10)

 

比如你新创建了1000个对象,才释放20个,就已经超过默认的700阀值,Python第一代检测就上场了(以此类推)

一般能活到最后的都不大可能是垃圾了,比如配置文件之类的,基本上不太改动的(越老越成精嘛)

小张若有所思的说道:

  1. 当计数器从(699,3,0)增加到(700,3,0),gc模块就会执行gc.collect(0),即检查一代对象的垃圾,并重置计数器为(0,4,0)
  2. 当计数器从(699,9,0)增加到(700,9,0),gc模块就会执行gc.collect(1),即检查一、二代对象的垃圾,并重置计数器为(0,0,1)
  3. 当计数器从(699,9,9)增加到(700,9,9),gc模块就会执行gc.collect(2),即检查一、二、三代对象的垃圾,并重置计数器为(0,0,0)

小明左右端详小张,终于忍不住说出了那句话:“小张,你能不能..."

话没说完就被小张打断了:”我是男的,不搞基!就是搞基也只喜欢我们班的培哥!“

小明吃惊的说道:”你想啥呢?我只是看你骨骼清奇,想要收你为徒罢了...“

(完)


经典引用:(参考1 参考2)

在Python中,每个对象都保存了一个称为引用计数的整数值,来追踪到底有多少引用指向了这个对象。无论何时,如果我们程序中的一个变量或其他对象引用了目标对象,Python将会增加这个计数值,而当程序停止使用这个对象,则Python会减少这个计数值。一旦计数值被减到零,Python将会释放这个对象以及回收相关内存空间。

从六十年代开始,计算机科学界就面临了一个严重的理论问题,那就是针对引用计数这种算法来说,如果一个数据结构引用了它自身,即如果这个数据结构是一个循环数据结构,那么某些引用计数值是肯定无法变成零的。

刚刚说到的例子中,我们以一个不是很常见的情况结尾:我们有一个“孤岛”或是一组未使用的、互相指向的对象,但是谁都没有外部引用。换句话说,我们的程序不再使用这些节点对象了,所以我们希望Python的垃圾回收机制能够足够智能去释放这些对象并回收它们占用的内存空间。但是这不可能,因为所有的引用计数都是1而不是0。Python的引用计数算法不能够处理互相指向自己的对象。

这就是为什么Python要引入Generational GC算法的原因!

Python使用一种不同的链表来持续追踪活跃的对象。而不将其称之为“活跃列表”,Python的内部C代码将其称为零代(Generation Zero)。每次当你创建一个对象或其他什么值的时候,Python会将其加入零代链表。

因为循环引用的原因,并且因为你的程序使用了一些比其他对象存在时间更长的对象,从而被分配对象的计数值与被释放对象的计数值之间的差异在逐渐增长。一旦这个差异累计超过某个阈值,则Python的收集机制就启动了,并且触发上边所说到的零代算法,释放“浮动的垃圾”,并且将剩下的对象移动到一代列表。

随着时间的推移,程序所使用的对象逐渐从零代列表移动到一代列表。而Python对于一代列表中对象的处理遵循同样的方法,一旦被分配计数值与被释放计数值累计到达一定阈值,Python会将剩下的活跃对象移动到二代列表。

通过这种方法,你的代码所长期使用的对象,那些你的代码持续访问的活跃对象,会从零代链表转移到一代再转移到二代。通过不同的阈值设置,Python可以在不同的时间间隔处理这些对象。Python处理零代最为频繁,其次是一代然后才是二代。

参考链接:

Python垃圾回收机制详解

经典之~画说 Ruby 与 Python 垃圾回收

使用 GC、Objgraph 干掉 Python 内存泄露与循环引用

Out[35]: [44,55,66]

In [36]: c

Out[36]: ([11,22,33,77,88], [44,55,66])

In [37]: e

Out[37]: ([11,22,33], [44,55,66])

In [38]: f

Out[38]: ([11,22,33,77,88], [44,55,66])

1.2.3拷贝的其他方式

浅拷贝对不可变类型和可变类型的copy不同

In [88]: a = [11,22,33]

In [89]: b =copy.copy(a)

In [90]: id(a)

Out[90]:59275144

In [91]: id(b)

Out[91]:59525600

In [92]:

a.append(44)

In [93]: a

Out[93]: [11,22,33,44]

In [94]: b

Out[94]: [11,22,33]

In [95]:

In [95]:

In [95]: a = (11,22,33)

In [96]: b =copy.copy(a)

In [97]: id(a)

Out[97]:58890680

In [98]: id(b)

Out[98]:58890680

·分片表达式可以赋值一个序列

a ="abc"

b = a[:]

·字典的copy方法可以拷贝一个字典

d = dict(name="zhangsan", age=27)

co = d.copy()

·有些内置函数可以生成拷贝(list)

a = list(range(10))

b = list(a)

·copy模块中的copy函数

importcopy

a = (1,2,3)

b = copy.copy(a)

1.3属性property

1.3.1私有属性添加getter和setter方法

classMoney(object):

def__init__(self):

self.__money =0

defgetMoney(self):

returnself.__money

defsetMoney(self, value):

ifisinstance(value, int):

self.__money = value

else:

print("error:不是整型数字")

1.3.2使用property升级getter和setter方法

classMoney(object):

def__init__(self):

self.__money =0

defgetMoney(self):

returnself.__money

defsetMoney(self, value):

ifisinstance(value, int):

self.__money = value

else:

print("error:不是整型数字")

money = property(getMoney, setMoney)

运行结果:

In [1]:fromget_setimportMoney

In [2]:

In [2]: a = Money()

In [3]:

In [3]: a.money

Out[3]:0

In [4]: a.money =100

In [5]: a.money

Out[5]:100

In [6]: a.getMoney()

Out[6]:100

1.3.3使用property取代getter和setter方法

@property成为属性函数,可以对属性赋值时做必要的检查,并保证代码的清晰短小,主要有2个作用:

·将方法转换为只读

·重新实现一个属性的设置和读取方法,可做边界判定

classMoney(object):

def__init__(self):

self.__money =0

@property

defmoney(self):

returnself.__money

@money.setter

defmoney(self, value):

ifisinstance(value, int):

self.__money = value

else:

print("error:不是整型数字")

运行结果

In [3]: a =Money()

In [4]:

In [4]:

In [4]: a.money

Out[4]:0

In [5]: a.money

=100

In [6]: a.money

Out[6]:100

1.4生成器

1.4.1什么是生成器

一边循环一边计算的机制,称为生成器:generator。

1.4.2创建生成器方法1

第一种方法很简单,只要把一个列表生成式的[ ]改成( )

In [15]: L = [ x*2forxinrange(5)]

In [16]: L

Out[16]: [0,2,4,6,8]

In [17]: G = ( x*2forxinrange(5))

In [18]: G

Out[18]: at0x7f626c132db0>

In [19]:

创建L和G的区别仅在于最外层的[ ]和( ),L是一个列表,而G是一个生成器。可以直接打印出L的每一个元素,但如果要一个一个打印出G的元素,可以通过next()函数获得生成器的下一个返回值:

In [19]: next(G)

Out[19]: 0

In [20]: next(G)

Out[20]: 2

In [21]: next(G)

Out[21]: 4

In [22]: next(G)

Out[22]: 6

In [23]: next(G)

Out[23]: 8

In [24]: next(G)


StopIterationTraceback (most recent call last)

in ()

----> 1 next(G)

StopIteration:

In [25]:

In [26]: G = ( x*2forxinrange(5))

In [27]:forxinG:

....:print(x)

....:

0

2

4

6

8

In [28]:

生成器保存的是算法,每次调用next(G),就计算出G的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的异常。当然,正确的方法是使用for循环,因为生成器也是可迭代对象。所以,创建了一个生成器后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration异常。

1.4.3创建生成器方法2

generator还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

[In []():

....:n =0

....:a,b =0,1

....:whilen

....:print(b)

....:a,b = b,a+b

....:n+=1

....:return'done'

....:

In [29]: fib(5)

1

1

2

3

5

Out[29]:'done'

可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

In [30]: def fib(times):

....:n = 0

....:a,b = 0,1

....:while n

....:yield b

....:a,b = b,a+b

....:n+=1

....:return 'done'

....:

In [31]: F = fib(5)

In [32]: next(F)

Out[32]: 1

In [33]: next(F)

Out[33]: 1

In [34]: next(F)

Out[34]: 2

In [35]: next(F)

Out[35]: 3

In [36]: next(F)

Out[36]: 5

In [37]: next(F)


StopIterationTraceback (most recent call last)

in ()

----> 1 next(F)

StopIteration: done

上面fib的例子中,在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

In [38]:forninfib(5):

....:print(n)

....:

1

1

2

3

5

In [39]:

用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

In [39]: g = fib(5)

In [40]:whileTrue:

....:try:

....:x = next(g)

....:print("value:%d"%x)

....:exceptStopIterationase:

....:print("生成器返回值:%s"%e.value)

....:break

....:

value:1

value:1

value:2

value:3

value:5

生成器返回值:done

In [41]:

1.4.4send

例子:执行到yield时,gen函数作用暂时保存,返回i的值;temp接收下次c.send("python"),send发送过来的值,c.next()等价c.send(None)

In [10]:defgen():

....:i =0

....:whilei<5:

....:temp =yieldi

....:print(temp)

....:i+=1

....:

使用next函数

In [11]: f = gen()

In [12]: next(f)

Out[12]: 0

In [13]: next(f)

None

Out[13]: 1

In [14]: next(f)

None

Out[14]: 2

In [15]: next(f)

None

Out[15]: 3

In [16]: next(f)

None

Out[16]: 4

In [17]: next(f)

None


StopIterationTraceback (most recent call last)

in ()

----> 1 next(f)

StopIteration:

使用__next__()方法

In [18]: f = gen()

In [19]: f.__next__()

Out[19]: 0

In [20]: f.__next__()

None

Out[20]: 1

In [21]: f.__next__()

None

Out[21]: 2

In [22]: f.__next__()

None

Out[22]: 3

In [23]: f.__next__()

None

Out[23]: 4

In [24]: f.__next__()

None


StopIterationTraceback (most recent call last)

in ()

----> 1 f.__next__()

StopIteration:

使用send

In [43]: f = gen()

In [44]: f.__next__()

Out[44]:0

In [45]: f.send('haha')

haha

Out[45]:1

In [46]: f.__next__()

None

Out[46]:2

In [47]: f.send('haha')

haha

Out[47]:3

In [48]:

1.4.5实现多任务

模拟多任务实现方式之一:协程

def test1():

while True:

print("--1--")

yield None

def test2():

while True:

print("--2--")

yield None

t1 = test1()

t2 = test2()

while True:

t1.__next__()

t2.__next__()

总结

生成器是这样一个函数,它记住上一次返回时在函数体中的位置。对生成器函数的第二次(或第n次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变。

生成器不仅“记住”了它数据状态;生成器还“记住”了它在流控制构造(在命令式编程中,这种构造不只是数据值)中的位置。

生成器的特点:

1.节约内存

2.迭代到下一次的调用时,所使用的参数都是第一次所保留下的,即是说,在整个所有函数调用的参数都是第一次所调用时保留的,而不是新创建的

1.5迭代器

迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

1.5.1可迭代对象

以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list、tuple、dict、set、str等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

1.5.2判断是否可以迭代

可以使用isinstance()判断一个对象是否是Iterable对象:

In [50]:fromcollectionsimportIterable

In [51]: isinstance([], Iterable)

Out[51]:True

In [52]: isinstance({}, Iterable)

Out[52]:True

In [53]: isinstance('abc', Iterable)

Out[53]:True

In [54]: isinstance((xforxinrange(10)), Iterable)

Out[54]:True

In [55]: isinstance(100, Iterable)

Out[55]:False

生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

1.5.3迭代器

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

In [56]:fromcollectionsimportIterator

In [57]: isinstance((xforxinrange(10)), Iterator)

Out[57]:True

In [58]: isinstance([], Iterator)

Out[58]:False

In [59]: isinstance({}, Iterator)

Out[59]:False

In [60]: isinstance('abc', Iterator)

Out[60]:False

In [61]: isinstance(100, Iterator)

Out[61]:False

1.5.4iter()函数

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

把list、dict、str等Iterable变成Iterator可以使用iter()函数:

In [62]: isinstance(iter([]), Iterator)

Out[62]:True

In [63]: isinstance(iter('abc'), Iterator)

Out[63]:True

总结

·凡是可作用于for循环的对象都是Iterable类型;

·凡是可作用于next()函数的对象都是Iterator类型

·集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

·目的是在使用集合的时候,减少占用的内容。

1.6闭包

1.6.1函数引用

deftest1():

print("--- in test1 func----")

#调用函数

test1()

#引用函数

ret = test1

print(id(ret))

print(id(test1))

#通过引用调用函数

ret()

运行结果:

---intest1 func----

140212571149040

140212571149040

---intest1 func----

1.6.2什么是闭包

#定义一个函数

deftest(number):

#在函数内部再定义一个函数,并且这个函数用到了外边函数的变量,那么将这个函数以及用到的一些变量称之为闭包

deftest_in(number_in):

print("in test_in函数, number_in is %d"%number_in)

returnnumber+number_in

#其实这里返回的就是闭包的结果

returntest_in

#给test函数赋值,这个20就是给参数number

ret = test(20)

#注意这里的100其实给参数number_in

print(ret(100))

#注意这里的200其实给参数number_in

print(ret(200))

运行结果:

intest_in函数, number_inis100

120

intest_in函数, number_inis200

220

1.6.3看一个闭包的实际例子:

defline_conf(a, b):

defline(x):

returna*x + b

returnline

line1 = line_conf(1,1)

line2 = line_conf(4,5)

print(line1(5))

print(line2(5))

例子中,函数line与变量a,b构成闭包。在创建闭包的时候,通过line_conf的参数a,b说明了这两个变量的取值,这样,就确定了函数的最终形式(y = x + 1和y = 4x + 5)。只需要变换参数a,b,就可以获得不同的直线表达函数。由此可以看到,闭包也具有提高代码可复用性的作用。

如果没有闭包,就需要每次创建直线函数的时候同时说明a,b,x。这样,就需要更多的参数传递,也减少了代码的可移植性。

注意:

1.闭包优化了变量,原来需要类对象完成的工作,闭包也可以完成

2.由于闭包引用了外部函数的局部变量,则外部函数的局部变量没有及时释放,消耗内存

1.7装饰器

装饰器,功能就是在运行原来功能基础上,加上一些其它功能,比如权限的验证,比如日志的记录等等。不修改原来的代码,进行功能的扩展。

1.7.1装饰器的理解

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

1.7.2多个装饰器

#定义函数:完成包裹数据

defmakeBold(fn):

defwrapped():

return""+ fn() +""

returnwrapped

#定义函数:完成包裹数据

defmakeItalic(fn):

defwrapped():

return""+ fn() +""

returnwrapped

@makeBold

deftest1():

return"hello world-1"

@makeItalic

deftest2():

return"hello world-2"

@makeBold

@makeItalic

deftest3():

return"hello world-3"

print(test1()))

print(test2()))

print(test3()))

运行结果:

hello world-1

hello world-2

hello world-3

1.7.3装饰器(decorator)功能

1.引入日志

2.函数执行时间统计

3.执行函数前预备处理

4.执行函数后清理功能

5.权限校验等场景

6.缓存

1.7.4装饰器示例

1.7.4.1例1:无参数的函数

fromtimeimportctime, sleep

deftimefun(func):

defwrappedfunc():

print("%s called at %s"%(func.__name__, ctime()))

func()

returnwrappedfunc

@timefun

deffoo():

print("I am foo")

foo()

sleep(2)

foo()

上面代码理解装饰器执行行为可理解成

foo = timefun(foo)

#foo先作为参数赋值给func后,foo接收指向timefun返回的wrappedfunc

foo()

#调用foo(),即等价调用wrappedfunc()

#内部函数wrappedfunc被引用,所以外部函数的func变量(自由变量)并没有释放

#func里保存的是原foo函数对象

1.7.4.2例2:被装饰的函数有参数

fromtimeimportctime, sleep

deftimefun(func):

defwrappedfunc(a, b):

print("%s called at %s"%(func.__name__, ctime()))

print(a, b)

func(a, b)

returnwrappedfunc

@timefun

deffoo(a, b):

print(a+b)

foo(3,5)

sleep(2)

foo(2,4)

1.7.4.3例3:被装饰的函数有不定长参数

fromtimeimportctime, sleep

deftimefun(func):

defwrappedfunc(*args, **kwargs):

print("%s called at %s"%(func.__name__, ctime()))

func(*args, **kwargs)

returnwrappedfunc

@timefun

deffoo(a, b, c):

print(a+b+c)

foo(3,5,7)

sleep(2)

foo(2,4,9)

1.7.4.4例4:装饰器中的return

fromtimeimportctime, sleep

deftimefun(func):

defwrappedfunc():

print("%s called at %s"%(func.__name__, ctime()))

func()

returnwrappedfunc

@timefun

deffoo():

print("I am foo")

@timefun

defgetInfo():

return'----hahah---'

foo()

sleep(2)

foo()

print(getInfo())

执行结果:

foo called at Fri Nov421:55:352016

I am foo

foo called at Fri Nov421:55:372016

I am foo

getInfo called at Fri Nov421:55:372016

None

如果修改装饰器为return

func(),则运行结果:

foo called at Fri Nov421:55:572016

I am foo

foo called at Fri Nov421:55:592016

I am foo

getInfo called at Fri Nov421:55:592016

----hahah---

总结:

·一般情况下为了让装饰器更通用,可以有return

1.7.4.5例5:装饰器带参数,在原有装饰器的基础上,设置外部变量

#decorator2.py

fromtimeimportctime, sleep

deftimefun_arg(pre="hello"):

deftimefun(func):

defwrappedfunc():

print("%s called at %s %s"%(func.__name__, ctime(), pre))

returnfunc()

returnwrappedfunc

returntimefun

@timefun_arg("wangcai")

deffoo():

print("I am foo")

@timefun_arg("python")

deftoo():

print("I am too")

foo()

sleep(2)

foo()

too()

sleep(2)

too()

可以理解为

foo()==timefun_arg("wangcai")(foo)()

1.7.4.6例6:类装饰器(扩展,非重点)

装饰器函数其实是这样一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。在Python中一般callable对象都是函数,但也有例外。只要某个对象重写了__call__()方法,那么这个对象就是callable的。

classTest():

def__call__(self):

print('call me!')

t = Test()

t()# call me

类装饰器demo

classTest(object):

def__init__(self, func):

print("---初始化---")

print("func name is %s"%func.__name__)

self.__func = func

def__call__(self):

print("---装饰器中的功能---")

self.__func()

#说明:

#1.当用Test来装作装饰器对test函数进行装饰的时候,首先会创建Test的实例对象

#并且会把test这个函数名当做参数传递到__init__方法中

#即在__init__方法中的func变量指向了test函数体

#

#2. test函数相当于指向了用Test创建出来的实例对象

#

#3.当在使用test()进行调用时,就相当于让这个对象(),因此会调用这个对象的__call__方法

#

#4.为了能够在__call__方法中调用原来test指向的函数体,所以在__init__方法中就需要一个实例属性来保存这个函数体的引用

#所以才有了self.__func = func这句代码,从而在调用__call__方法中能够调用到test之前的函数体

@Test

deftest():

print("----test---")

test()

showpy()#如果把这句话注释,重新运行程序,依然会看到"--初始化--"

运行结果如下:

---初始化---

func nameistest

---装饰器中的功能---

----test---

1.8python是动态语言

1.8.1动态语言的定义

动态编程语言是一类在运行时可以改变其结构的语言:例如新的函数、对象、甚至代码可以被引进,已有的函数可以被删除或是其他结构上的变化。

1.8.2运行的过程中给对象绑定(添加)属性

>>>classPerson(object):

def__init__(self, name = None, age = None):

self.name = name

self.age = age

>>>P = Person("小明","24")

>>>

上面定义了1个类Person,在这个类里,定义了两个初始属性name和age,

>>>P.sex ="male"

>>>P.sex

'male'

>>>

动态给实例绑定sex属性。

1.8.3运行的过程中给类绑定(添加)属性

>>>P1 = Person("小丽","25")

>>>P1.sex

Traceback (most recent call last):

File"", line1,in

P1.sex

AttributeError: Person instance has no attribute'sex'

>>>

尝试打印P1.sex,发现报错,P1没有sex这个属性。可以直接给Person绑定属性。

>>>> Person.sex =None#给类Person添加一个属性

>>>P1 = Person("小丽","25")

>>>print(P1.sex)#如果P1这个实例对象中没有sex属性的话,那么就会访问它的类属性

None#可以看到没有出现异常

>>>

1.8.4运行的过程中给类绑定(添加)方法

functio绑定:

>>>classPerson(object):

def__init__(self, name = None, age = None):

self.name = name

self.age = age

defeat(self):

print("eat food")

>>>defrun(self, speed):

print("%s在移动,速度是%d km/h"%(self.name, speed))

>>>P = Person("老王",24)

>>>P.eat()

eat food

>>>

>>>P.run()

Traceback (most recent call last):

File"", line1,in

P.run()

AttributeError: Person instance has no attribute'run'

>>>

>>>

>>>importtypes

>>>P.run = types.MethodType(run, P)

>>>P.run(180)

老王在移动,速度是180km/h

给对象添加一个方法是对象.方法名= xxxx

完整的代码如下:

importtypes

#定义了一个类

classPerson(object):

num =0

def__init__(self, name = None, age = None):

self.name = name

self.age = age

defeat(self):

print("eat food")

#定义一个实例方法

defrun(self, speed):

print("%s在移动,速度是%d km/h"%(self.name, speed))

#定义一个类方法

@classmethod

deftestClass(cls):

cls.num =100

#定义一个静态方法

@staticmethod

deftestStatic():

print("---static method----")

#创建一个实例对象

P = Person("老王",24)

#调用在class中的方法

P.eat()

#给这个对象添加实例方法

P.run = types.MethodType(run, P)

#调用实例方法

P.run(180)

#给Person类绑定类方法

Person.testClass = testClass

#调用类方法

print(Person.num)

Person.testClass()

print(Person.num)

#给Person类绑定静态方法

Person.testStatic = testStatic

#调用静态方法

Person.testStatic()

1.8.5运行的过程中删除属性、方法

删除的方法:

1.del对象.属性名

2.delattr(对象, "属性名")

1.8.6__slots__

动态语言与静态语言的不同:

动态语言:可以在运行的过程中,修改代码

静态语言:编译时已经确定好代码,运行过程中不能修改

Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:

>>>classPerson(object):

__slots__ = ("name","age")

>>>P = Person()

>>>P.name ="老王"

>>>P.age =20

>>>P.score =100

Traceback (most recent call last):

File"", line1,in

AttributeError: Person instance has no attribute'score'

>>>

注意:

·使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的

In [67]:classTest(Person):

...:pass

...:

In [68]: t = Test()

In [69]: t.score =100

1.9元类

1.9.1类也是对象

类就是一组用来描述如何生成一个对象的代码段:

>>>classObjectCreator(object):

…pass

>>>my_object = ObjectCreator()

>>>printmy_object

<__main__.ObjectCreator object at0x8974f2c>

类同样也是一种对象。

Python解释器在执行class的时候会创建一个对象。

下面的代码段:

>>>classObjectCreator(object):

…pass

将在内存中创建一个对象,名字就是ObjectCreator。这个对象(类对象ObjectCreator)拥有创建对象(实例对象)的能力。但是,它的本质仍然是一个对象,可以进行如下的操作:

1.可以将它赋值给一个变量

2.可以拷贝它

3.可以为它增加属性

4.可以将它作为函数参数进行传递

下面是示例:

>>> print ObjectCreator#可以打印一个类,因为它其实也是一个对象

>>> def echo(o):

…print o

>>> echo(ObjectCreator)#可以将类做为参数传给函数

>>> print hasattr(ObjectCreator, 'new_attribute')

Fasle

>>> ObjectCreator.new_attribute = 'foo' #可以为类增加属性

>>> print hasattr(ObjectCreator, 'new_attribute')

True

>>> print ObjectCreator.new_attribute

foo

>>> ObjectCreatorMirror = ObjectCreator #可以将类赋值给一个变量

>>> print ObjectCreatorMirror()

<__main__.ObjectCreator object at 0x8997b4c>

1.9.2动态地创建类

类也是对象,可以在运行时动态的创建它们,就像其他任何对象一样。

可以在函数中创建类,使用class关键字:

>>> def choose_class(name):

…if name == 'foo':

…class Foo(object):

…pass

…return Foo#返回的是类,不是类的实例

…else:

…class Bar(object):

…pass

…return Bar

>>> MyClass = choose_class('foo')

>>> print MyClass#函数返回的是类,不是类的实例

>>> print MyClass()#可以通过这个类创建类实例,也就是对象

<__main__.Foo object at 0x89c6d4c>

内建函数type查看对象的类型:

>>> print type(1) #数值的类型

>>> print type("1") #字符串的类型

>>> print type(ObjectCreator()) #实例对象的类型

>>> print type(ObjectCreator) #类的类型

1.9.3使用type创建类

type可以动态的创建类。

type可以接受一个类的描述作为参数,然后返回一个类。

type可以像这样工作:

type(类名,由父类名称组成的元组(针对继承的情况,可以为空),包含属性的字典(名称和值))

比如下面的代码:

In [2]:classTest:#定义了一个Test类

...:pass

...:

In [3]: Test()#创建了一个Test类的实例对象

Out[3]: <__main__.Test at0x10d3f8438>

可以手动像这样创建:

Test2 = type("Test2",(),{})#定了一个Test2类

In [5]: Test2()#创建了一个Test2类的实例对象

Out[5]: <__main__.Test2 at0x10d406b38>

使用"Test2"作为类名,并且也可以把它当做一个变量来作为类的引用。类和变量是不同的,这里没有任何理由把事情弄的复杂。即type函数中第1个实参,也可以叫做其他的名字,这个名字表示类的名字

In [23]: MyDogClass = type('MyDog', (), {})

In [24]: print MyDogClass

使用help来测试这2个类

In [10]: help(Test) #用help查看Test类

Help on class Test in module __main__:

class Test(builtins.object)

|Data descriptors defined here:

|

本文由澳门在线威尼斯官方发布于电脑操作,转载请注明出处:基础拓展,Python高级编程总结

关键词:

上一篇:没有了

下一篇:LaTex in 马克down